Multi-View Network Representation Learning Algorithm Research
نویسندگان
چکیده
منابع مشابه
On Deep Multi-View Representation Learning
We consider learning representations (features) in the setting in which we have access to multiple unlabeled views of the data for representation learning while only one view is available at test time. Previous work on this problem has proposed several techniques based on deep neural networks, typically involving either autoencoderlike networks with a reconstruction objective or paired feedforw...
متن کاملLearning Human Identity Using View-Invariant Multi-view Movement Representation
In this paper a novel view-invariant human identification method is presented. A multi-camera setup is used to capture the human body from different observation angles. Binary body masks from all the cameras are concatenated to produce the so-called multi-view binary masks. These masks are rescaled and vectorized to create feature vectors in the input space. A view-invariant human body represen...
متن کاملAn Aention-based Collaboration Framework for Multi-View Network Representation Learning
Learning distributed node representations in networks has been a�racting increasing a�ention recently due to its e�ectiveness in a variety of applications. Existing approaches usually study networks with a single type of proximity between nodes, which de�nes a single view of a network. However, in reality there usually exists multiple types of proximities between nodes, yielding networks with m...
متن کاملDeep Learning Multi-View Representation for Face Recognition
Various factors, such as identities, views (poses), and illuminations, are coupled in face images. Disentangling the identity and view representations is a major challenge in face recognition. Existing face recognition systems either use handcrafted features or learn features discriminatively to improve recognition accuracy. This is different from the behavior of human brain. Intriguingly, even...
متن کاملOn Deep Multi-View Representation Learning: Objectives and Optimization
We consider learning representations (features) in the setting in which we have access to multiple unlabeled views of the data for learning while only one view is available for downstream tasks. Previous work on this problem has proposed several techniques based on deep neural networks, typically involving either autoencoder-like networks with a reconstruction objective or paired feedforward ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms
سال: 2019
ISSN: 1999-4893
DOI: 10.3390/a12030062